Human oocytes express ATP-sensitive K+ channels
نویسندگان
چکیده
منابع مشابه
Human oocytes express ATP-sensitive K(+) channels.
BACKGROUND ATP-sensitive K(+) (K(ATP)) channels link intracellular metabolism with membrane excitability and play crucial roles in cellular physiology and protection. The K(ATP) channel protein complex is composed of pore forming, Kir6.x (Kir6.1 or Kir6.2) and regulatory, SURx (SUR2A, SUR2B or SUR1), subunits that associate in different combinations. The objective of this study was to determine...
متن کاملATP-sensitive K+ channels in renal mitochondria.
Isolated kidney mitochondria swell when incubated in hyposmotic solutions containing K+ salts in a manner inhibited by ATP, ADP, 5-hydroxydecanoate, and glibenclamide and stimulated by GTP and diazoxide. These results suggest the existence of ATP-sensitive K+ channels in these mitochondria, similar to those previously described in heart, liver, and brain. Renal mitochondrial ATP-sensitive K+ up...
متن کاملDynamic sensitivity of ATP-sensitive K(+) channels to ATP.
ATP and MgADP regulate K(ATP) channel activity and hence potentially couple cellular metabolism to membrane electrical activity in various cell types. Using recombinant K(ATP) channels that lack sensitivity to MgADP, expressed in COSm6 cells, we demonstrate that similar on-cell activity can be observed with widely varying apparent submembrane [ATP] ([ATP](sub)). Metabolic inhibition leads to a ...
متن کاملTaste receptor cells express pH-sensitive leak K+ channels.
Two-pore domain K+ channels encoded by genes KCNK1-17 (K2p1-17) play important roles in regulating cell excitability. We report here that rat taste receptor cells (TRCs) highly express TASK-2 (KCNK5; K2p5.1), and to a much lesser extent TALK-1 (KCNK16; K2p16.1) and TASK-1 (KCNK3; K2p3.1), and suggest potentially important roles for these channels in setting resting membrane potentials and in so...
متن کاملSurface charge and properties of cardiac ATP-sensitive K+ channels
ATP-sensitive K+ (KATP) channels are present in a wide variety of tissues. The sensitivity of these channels to closure by cytosolic ATP (ATPi) varies significantly among different tissues and even within the same tissue. The purpose of this study was to test the hypothesis that negative surface charges modulate the sensitivity of the KATP channels to ATPi by influencing surface potential in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Reproduction
سال: 2010
ISSN: 0268-1161,1460-2350
DOI: 10.1093/humrep/deq245